Закон оптимума на примере растений

Глава 2. Организм и среда. Общие закономерности Н.М. Чернова, А.М. Былова Общая экология. Учебник М.: Дрофа, 2004 Глава 2. Организм и среда. Общие закономерности 2.3. Общие законы

Закон оптимума на примере растений

Глава 2. Организм и среда. Общие закономерности

Н.М. Чернова, А.М. Былова
Общая экология. Учебник
М.: Дрофа, 2004

Глава 2. Организм и среда. Общие закономерности

2.3. Общие законы действия факторов среды на организмы

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

1. Закон оптимума.

Каждый фактор имеет определенные пределы положительного влияния на организмы (рис. 1). Результат действия переменного фактора зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида. Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды.

Рис. 1. Схема действия факторов среды на живые организмы

Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической валентности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне более 80 °C (от +30 до -55 °C), тогда как тепловодные рачки Copilia mirabilis выдерживают изменения температуры воды в интервале не более 6 °C (от +23 до + 29 °C). Одна и та же сила проявления фактора может быть оптимальной для одного вида, пессимальной – для другого и выходить за пределы выносливости для третьего (рис. 2).

Широкую экологическую валентность вида по отношению к абиотическим факторам среды обозначают добавлением к названию фактора приставки «эври». Эвритермные виды – выносящие значительные колебания температуры, эврибатные– широкий диапазон давления, эвригалинные – разную степень засоления среды.

Рис. 2. Положение кривых оптимума на температурной шкале для разных видов:

1, 2 — стенотермные виды, криофилы;

3–7– эвритермные виды;

8, 9 — стенотермные виды, термофилы

Неспособность переносить значительные колебания фактора, или узкая экологическая валентность, характеризуется приставкой «стено» – стенотермные, стенобатные, стеногалинные виды и т. д. В более широком смысле слова виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными, а те, которые способны приспосабливаться к разной экологической обстановке, – эврибионтными.

Условия, приближающиеся по одному или сразу нескольким факторам к критическим точкам, называют экстремальными.

Положение оптимума и критических точек на градиенте фактора может быть в определенных пределах сдвинуто действием условий среды. Это регулярно происходит у многих видов при смене сезонов года. Зимой, например, воробьи выдерживают сильные морозы, а летом гибнут от охлаждения при температуре чуть ниже нуля. Явление сдвига оптимума по отношению к какому-либо фактору носит название акклимации. В отношении температуры это хорошо известный процесс тепловой закалки организма. Для температурной акклимации необходим значительный период времени. Механизмом является смена в клетках ферментов, катализирующих одни и те же реакции, но при разных температурах (так называемые изоферменты). Каждый фермент кодируется своим геном, следовательно, необходимо выключение одних генов и активация других, транскрипция, трансляция, сборка достаточного количества нового белка и т. п. Общий процесс занимает в среднем около двух недель и стимулируется переменами в окружающей среде. Акклимация, или закалка, – важная адаптация организмов, происходит при постепенно надвигающихся неблагоприятных условиях или при попадании на территории с иным климатом. Она является в этих случаях составной частью общего процесса акклиматизации.

2. Неоднозначность действия фактора на разные функции.

Каждый фактор неодинаково влияет на разные функции организма (рис. 3). Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале.

Рис. 3. Схема зависимости фотосинтеза и дыхания растения от температуры (по В. Лархеру, 1978): tмин, tопт, tмакс– температурный минимум, оптимум и максимум для прироста растений (заштрихованная область)

Жизненный цикл, в котором в определенные периоды организм осуществляет преимущественно те или иные функции (питание, рост, размножение, расселение и т. п.), всегда согласован с сезонными изменениями комплекса факторов среды. Подвижные организмы могут также менять места обитания для успешного осуществления всех своих жизненных функций.

3. Разнообразие индивидуальных реакций на факторы среды. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Например, у бабочки мельничной огневки – одного из вредителей муки и зерновых продуктов – критическая минимальная температура для гусениц -7 °C, для взрослых форм -22 °C, а для яиц -27 °C. Мороз в -10 °C губит гусениц, но не опасен для имаго и яиц этого вредителя. Следовательно, экологическая валентность вида всегда шире экологической валентности каждой отдельной особи.

4. Относительная независимость приспособления организмов к разным факторам. Степень выносливости к какому-нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

5. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким-либо отдельным факторам.

Рис. 4. Изменение участия в луговых травостоях отдельных видов растений в зависимости от увлажнения (по Л. Г. Раменскому и др., 1956): 1– клевер луговой; 2– тысячелистник обыкновенный; 3– келерия Делявина; 4– мятлик луговой; 5– типчак; 6– подмаренник настоящий; 7– осока ранняя; 8– таволга обыкновенная; 9– герань холмовая; 10 – короставник полевой; 11– козлобородник коротконосиковый

Правило экологической индивидуальности видов сформулировал русский ботаник Л. Г. Раменский (1924) применительно к растениям (рис. 4), затем оно широко было подтверждено и зоологическими исследованиями.

6. Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы (рис. 5). Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов.

Рис. 5. Смертность яиц соснового шелкопряда Dendrolimus pini при разных сочетаниях температуры и влажности

Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

Учитывая в сельскохозяйственной практике закономерности взаимодействия экологических факторов, можно умело поддерживать оптимальные условия жизнедеятельности культурных растений и домашних животных.

7. Правило ограничивающих факторов. Возможности существования организмов в первую очередь ограничивают те факторы среды, которые наиболее удаляются от оптимума. Если хотя бы один из экологических факторов приближается или выходит за пределы критических величин, то, несмотря на оптимальное сочетание остальных условий, особям грозит гибель. Любые сильно уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных его представителей в конкретные отрезки времени.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 6). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо.

Рис. 6. Глубокий снежный покров – лимитирующий фактор в распространении оленей (по Г. А. Новикову, 1981)

Чтобы определить, сможет ли вид существовать в данном географическом районе, нужно в первую очередь выяснить, не выходят ли какие-либо факторы среды за пределы его экологической валентности, особенно в наиболее уязвимый период развития.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства, так как, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность растений или производительность животных. Так, на сильно кислых почвах урожай пшеницы можно несколько увеличить, применяя разные агрономические воздействия, но наилучший эффект будет получен только в результате известкования, которое снимет ограничивающие действия кислотности. Знание ограничивающих факторов, таким образом, ключ к управлению жизнедеятельностью организмов. В разные периоды жизни особей в качестве ограничивающих выступают различные факторы среды, поэтому требуется умелое и постоянное регулирование условий жизни выращиваемых растений и животных.

Экологический срез: правило оптимума, законы Либиха и Шелфорда

Тема воздействия человека на экологию и экологии на жизнь на планете сегодня очень актуальна. Всё больше говорится об отрицательном влиянии деятельности человека на природу, глобальном потеплении, угрозе исчезновения некоторых видов животных, загрязнении мирового океана и т.д. Мы же, являясь теми, кому всё это далеко не безразлично, не можем не посвятить одну из наших статей экологической теме.

Ниже мы поговорим о том, как могут воздействовать экологические факторы на живые организмы, что поможет каждому из нас сделать определённые выводы.

Вместо введения

Невзирая на то, что многообразие экологических факторов просто огромно, а природа их происхождения нередко может различаться, есть такие закономерности и правила воздействия этих экологических факторов на живые организмы, которые являются универсальными.

Каким бы ни был экологический фактор, воздействовать на живые организмы он будет так:

  • Происходят изменения в географическом распространении видов
  • Происходят изменения в плодовитости и смертности видов
  • Возникает миграция видов
  • У видов появляются приспособительные качества и адаптации

Однако максимально эффективно действовать фактор будет в том случае, если его значение является для организма оптимальным, а не критическим. Воздействие же фактора будет сказываться абсолютно на всех живых организмах, в том числе и на человеке.

Закономерности воздействия экологических факторов на организмы

Далее нами будут рассмотрены основные закономерности воздействия экологических факторов на организмы:

  • Правило оптимума
  • Закон минимума Либиха
  • Закон толерантности Шелфорда

Правило оптимума

В первую очередь следует сказать о том, что результат действия экологического фактора зависит от того, насколько он интенсивен. Наиболее благоприятный диапазон воздействия называется зоной оптимума, гарантирующей нормальную жизнедеятельность. И если действие фактора отклоняется от зоны оптимума, то оказывается негативное воздействие на жизнедеятельность популяции вида, т.е. фактор переходит в зону угнетения.

Минимальные и максимальные значения фактора называются критическими точками, вне пределов которых организм существовать уже не может. Диапазон воздействия экологического фактора между критическими точками – это зона толерантности организма в отношении конкретного фактора.

Если, например, отобразить действие фактора графически, то точка на оси X, которая будет соответствовать лучшему показателю жизнедеятельности организма, будет являться оптимальной величиной фактора или просто точкой оптимума. Однако определить её очень трудно, поэтому чаще в расчёт берётся зона оптимума или зона комфорта.

Из этого следует, что точки, соответствующие минимальным, максимальным и оптимальным показателям, являются кардинальными точками, определяющими возможные варианты реагирования организма на конкретный фактор. И если среда характеризуется такими условиями, где фактор или несколько факторов выходят заграницы зоны оптимума и действуют на организм угнетающе, то она будет являться экстремальной средой.

Представленные закономерности и являются правилом оптимума.

Закон минимума Либиха

Для поддержания жизнедеятельности живых организмов нужно, чтобы условия среды сочетались определённым образом. Например, когда среда обладает всеми благоприятными условиями, кроме одного, это одно условие играет решающую роль в жизни конкретного организма. Учитывая то, что он ограничивает развитие организма, его следует называть лимитирующим фактором. Другими словами, лимитирующим является экологический фактор со значением, выходящим за пределы выживаемости вида.

Изначально учёные остановили, что развитие живых организмов лимитируется недостатком какого-то одного элемента (света, влаги, минеральных солей и т.д.). Однако в середине XIX столетия немецким химиком-органиком Юстасом Либихом было впервые экспериментально доказано, что рост растений находится в зависимости от компонента питания, изначально присутствующего в минимальном количестве. Данное явление получило название закона минимума Либиха.

Если же дать этому закону современную формулировку, то выглядеть она будет следующим образом: выносливость живого организма определяет самое слабое звено в цепочке его экологических потребностей.

Закон толерантности Шелфорда

Через 70 лет после открытия закона минимума Либиха было установлено, что лимитирующее воздействие оказывается не только недостатком, но и преизбытком фактора (обильные дожди губят урожай, почва становится неплодородной от перенасыщения удобрениями и т.п.).

Эта идея была введена американским зоологом Виктором Шелфордом, который и сформулировал закон толерантности. Этот закон звучит так: роль лимитирующего фактора процветания организма может выполнять и минимум, и максимум экологического воздействия, а имеющийся между ними диапазон указывает на предел толерантности (величину выносливости) или экологическую валентность организма к конкретному экологическому фактору.

Сам же принцип ограничивающих факторов применим к любым типам живых организмов: животным и растениями, биотическим и абиотическим формам. К примеру, конкуренция одного вида с другим – это лимитирующий фактор; сорняки, вредители или недостаточная популяция другого вида – это тоже лимитирующие факторы. Однако, исходя из закона толерантности, если какое-то вещество или энергия присутствуют в среде в избытке, начинается загрязнение среды.

Что же касается предела выносливости организма, то измерить его можно на стадии перехода от одной стадии развития к другой, т.к. нередко молодые особи являются более требовательными к среде и уязвимыми, нежели взрослые. Самым же критическим с позиции влияния любых факторов можно назвать именно период размножения, когда множество факторов приобретают статус лимитирующих.

Следует также отметить, что всё, сказанное до этого, относительно выносливости организма, касалось лишь одного фактора, однако для живой природы характерно совместное действие всех экологических факторов.

Взаимодействие экологических факторов

Смещение самой оптимальной зоны и пределов толерантности живого организма в отношении какого-то экологического фактора зависит от сочетания действий других факторов. Этот феномен называется констелляцией или взаимодействием экологических факторов.

К примеру, каждый знает, что жаркая погода гораздо легче переносится, когда воздух сухой, а не влажный; замёрзнуть при низкой температуре можно быстрее, когда дует ветер; растущие в тени растения меньше нуждаются в цинке, чем растения, растущие на солнце и т.д. Говоря несколько иначе, имеет место компенсация действия экологических факторов.

Но эта компенсация ограничена, ведь один фактор не способен на 100% заменить другой. Если не будет воды или одного из питательных элементов, то растения погибнут, даже если другие факторы будут находиться в идеальном сочетании. И из этого можно заключить, что каждое условие среды, которое поддерживает жизнь, имеет одинаковое значение, а лимитировать существование живого организма может любой фактор. Этот закон называется законом равнозначности условий жизни.

В огромном количестве законов, которые определяют взаимодействие особи или человека с окружающей средой, можно также выделить и правило соответствия условий среды генетической предопределённости организма. Согласно этому правилу, существование какого-либо вида обусловлено соответствием окружающей природной среды его генетическому потенциалу адаптации к изменениям и колебаниям.

Послесловие

Любой из видов живых организмов появился в конкретной среде, в какой-то мере к ней адаптировался и продолжение его жизни возможно только лишь в ней или в максимально к ней близкой. Быстрые и резкие изменения среды обитания могут стать причиной того, что организм просто не сможет к ней приспособиться, т.к. его генетический адаптивный потенциал окажется недостаточным для этого.

И это является одной из основных гипотез, объясняющих вымирание крупных пресмыкающихся по причине резкого изменения экологических условий на планете, ведь приспособиться крупным организмам намного сложнее, нежели мелким, и адаптация требует огромных временных затрат. Исходя из этого, серьёзные преобразования окружающей среды представляют угрозу для любого живого существа на планете, и для человека в том числе.

Берегите природу и старайтесь сохранять чистоту не только внутри себя, но и снаружи!

Закон оптимума

Автор: Пользователь скрыл имя, 16 Марта 2012 в 09:28, реферат

Краткое описание

Сила воздействия экологических факторов постоянно меняется. Лишь в определенных местах планеты значения некоторых из них более или менее постоянны (константны). Например: на дне океанов, в глубинах пещер сравнительно постоянны температурный и водный режимы, режим освещения.

Файлы: 1 файл

экология.docx

1. Закон оптимума

выражается в том, что любой экологический фактор имеет пределы положительного влияния на живые организмы.

Сила воздействия экологических факторов постоянно меняется. Лишь в определенных местах планеты значения некоторых из них более или менее постоянны (константны). Например: на дне океанов, в глубинах пещер сравнительно постоянны температурный и водный режимы, режим освещения.

Рассмотри действие закона оптимума на конкретном примере: животные и растения плохо переносят и сильную жару, и сильные морозы, оптимальными для них являются средниетемпер атуры — так называемая зона оптимума. Чем сильнее отклонения от оптимума, тем в большей степени данный экологический фактор угнетает жизнедеятельность организма. Эта зона носит название зоны пессимума. В ней имеются критические точки — «максимальное значение фактора» и «минимальное значение фактора»; за их пределами наступает гибель организмов.Расстояние между минимальным и максимальным значениями фактора называют экологической валентностью или толерантность ю организма (рис. 3).

Рис. 3. Схема действия факторов среды на живые организмы.

Пример проявления данного закона: яйца аскарид развиваются при , а оптимальной для их развития является . То есть экологическая толерантность аскарид по температурному режиму составляет от до .

По характеру толерантности выделяют следующие виды:

эврибионтные — имеющие широкую экологическую валентность по отношению к абиотическим факторам среды; делятся на эвритермные (выносящие значительные колебания температур),эврибатные ( выносящие широкий диапазон показателей давления), эвригалинные ( выносящие разную степень засоленности среды).

стенобионтные — неспособные переносить значительные колебания фактора (например, стенотермными являю тся белые медведи, ластоногие млекопитающие, обитающие при низком температурном режиме).

3. Закон ограничивающего (лимитирующего) фактора

гласит, что наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Закон был установлен в 1905 г. английским ученым Блеккером.

Именно от этого, минимально (или максимально) представленного в данный конкретный момент экологического фактора зависит выживание организма. В другие отрезки времени ограничивающим могут быть другие факторы. В течение жизни особи видов встречаются с самыми разными ограничениями своей жизнедеятельности. Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; бабочки озимой совки (вредителя овощных и зерновых культур) — зимняя температура и т. д.

Это закон учитывается в практике сельского хозяйства. Немецкий химик Ю. Либих установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо. Например, если фосфора в почве лишь 20% от необходимой нормы, а кальция — 50% от нормы, то ограничивающим фактором будет недостаток фосфора; необходимо в первую очередь внести в почву именно фосфорсодержащие удобрения.

Это правило Ю. Либих назвал «правилом минимума», так как изучал влияние недостаточных доз удобрений. Позднее выяснилось, что избыток минеральных солей в почве тоже снижает урожайность, так как при этом нарушается способность корней всасывать растворы солей.

Рис. 4. Иллюстрация экологической индивидуальности различных видов по отношению к температурным показателям.

Закон оптимума (в экологии) — любой экологический фактор имеет определённые пределы положительного влияния на живые организмы.

Результаты действия переменного фактора зависят прежде всего от силы его проявления, или дозировки. Факторы положительно влияют на организмы лишь в определенных пределах. Недостаточное либо избыточное их действие сказывается на организмах отрицательно.

Зона оптимума — это тот диапазон действия фактора, который наиболее благоприятен для жизнедеятельности. Отклонения от оптимума определяют зоны пессимума. В них организмы испытывают угнетение.

Минимально и максимально переносимые значения фактора — это критические точки, за которыми организм гибнет.

Закон оптимума универсален. Он определяет границы условий, в которых возможно существование видов, а также меру изменчивости этих условий. Виды чрезвычайно разнообразны по способности переносить изменения факторов. В природе выделяются два крайних варианта — узкая специализация и широкая выносливость. У специализированных видов критические точки значения фактора сильно сближены, такие виды могут жить только в относительно постоянных условиях. Так, многие глубоководные обитатели — рыбы, иглокожие, ракообразные — не переносят колебания температуры даже в пределах 2-3 °С. Растения влажных местообитаний (калужница болотная, недотрога и др.) моментально вянут, если воздух вокруг них не насыщен водяными парами. Виды с узким диапазоном выносливости называют стенобионтами, а с широким — эврибионтами. Если нужно подчеркнуть отношение к какому-либо фактору, используют сочетания «стено-» и «эври-» применительно к его названию, например, стенотермный вид — не переносящий колебания температур, эвригалинный — способный жить при широких колебаниях солености воды и т. п.

Предмет и задачи экологии

Экология (от греч. óikos — «жилище», «местопребывание», «убежище» и logos — «наука») — это наука, изучающая организацию и функционирование организмов и надорганизменных систем различных уровней (популяций, биоценозов, экосистем и биосферы в целом). Экологию также определяют как науку о взаимоотношениях организмов между собой и с окружающей средой.

Экология тесно связана с теорией эволюции. Благодаря естественному отбору в процессе исторического развития органического мира оставались лишь те виды, популяции и биоценозы, которые в борьбе за существование выживали и приспосабливались к изменяющейся окружающей среде. Экология также связана с такими биологическими дисциплинами, как ботаника (экология растений), зоология (экология животных), генетика, этология (наука о поведении животных), физиология и др.

Вместе с тем, понятие «экология» в настоящее время трактуется более широко. Оно охватывает все стороны жизни человека, его физический и духовный мир: иными словами, это уже не просто наука, а мировоззрение. В последние годы крайне усиливается социальный аспект в определении экологии, и её трактуют как совокупность научных и практических проблем взаимодействия человека и природной среды.

Рис. 2. Эрнст Геккель (1834 — 1919)

Термин «экология» предложен немецким естествоиспытателем Эрнстом Геккелем в работах «Всеобщая морфология организмов» (1866 г.) и «Естественная история миротворения» (1868 г.) для обозначения «общей науки об отношениях организмов к окружающей среде».

Предыстория экологии как науки восходит к трудам многих естествоиспытателей XVIII — XIX вв. (К. Линней, Ж.Б. Ламарк, Ж. Бюффон, Э.Ж. Сент-Илер, А. Гумбольдт, Ч. Дарвин, К.Ф. Рулье, Н.А Северцов и многие другие), которые полагали, что не только строение и развитие организмов, но и их взаимоотношения со средой обитания подчинены определённым закономерностям.

Все разделы биологии изучают жизнь на молекулярном, клеточном или организменном уровнях, так как индивидуум является самой крупной единицей исследования. Однако имеются и более сложные формы организации живого. Группы сходных индивидуумов одного вида объединяются в популяции, популяции различных видов растений и животных объединяются всообщества, которые в свою очередь образуют с неживой природой биогеоценозы (экосистемы) и в целом биосферу нашей планеты.

Следовательно, современная экология изучает жизнь, интегрированную в биологические системы более высокого ранга, чем организм. Этим экология отличается от других областей биологии, которые она обогащает, но ни в коем случае не растворяется в них и не исчезает как самостоятельная наука.

Экология исследует три основных уровня организации живой материи: отдельные особи, популяции и сообщества. В зависимости от изучаемого уровня меняются и задачи экологии.

Предметом исследования экологии являются биологические макросистемы: популяции, сообщества, экосистемы и их динамика во времени и пространстве.

Из объекта и предмета экологии вытекают и основные её задачи: изучение динамики популяций и экосистем во времени и пространстве. Главная теоретическая и практическая задача экологии заключается в том, чтобы управлять ими в условиях всё возрастающего влияния человека на окружающую среду. Экология изучает принципы и законы, определяющие временные и пространственные типы объединения организмов, потоки вещества и энергии через отдельные трофические уровни, закономерности функционирования экосистем и биосферы в целом.

Разделы экологии. Методы исследования.

На современном уровне развития общества экология превратилась в одну из ведущих биологических наук. Это в значительной степени обусловлено тем, что решение проблем, связанных с рациональным использованием природных ресурсов биосферы, возможно только с экологических позиций.

1. Аутэкология (греч. autos — «сам») — раздел экологии, изучающий действие различных факторов среды на отдельных особей.

2. Популяционная экология — раздел экологии, изучающий пространственную структуру и динамику (изменения) численности популяций.

3. Синэкология (греч. syn — «вместе» и koinos — «общий») — раздел экологии, исследующий видовой состав сообществ, их пространственную структуру и изменение во времени.

1. Полевые исследования, т.е. изучение популяций видов и их сообществ в естественной среде обитания. Именно при помощи полевых методов можно установить результаты влияния на организм конкретного комплекса факторов окружающей среды, выявить общую картину развития вида в определённых условиях.

2. Метод эксперимента. Главной его задачей является выяснение (путём наблюдения) причин существующих природе взаимоотношений. Путём эксперимента (опыт сравнивается с контролем) вычленяется и анализируется роль отдельных факторов при постоянстве всех остальных.

3. Метод моделирования биологических явлений. Методы математического моделирования используются для экологического прогнозирования. Поскольку в условиях научно-технического прогресса воздействие человека на окружающую среду неизбежно, составление экологического прогноза необходимо. Это сложная и ответственная задача, решить которую невозможно без многостороннего математического анализа всех аспектов взаимоотношений живых организмов с многочисленными факторами внешней среды. Управление экосистемами на основе точно составленных прогнозов — задача будущего.

Экологические факторы — это факторы среды, которые воздействуют на организм.

Среда обитания — это всё то, что окружает живой организм и прямо или косвенно влияет на его состояние, развитие, выживаемость, размножение и т.д.

Условия существования, или условия жизни, — совокупность необходимых для жизни элементов, т.е. комплекс экологических факторов, без которых организм не может существовать.

Все приспособления к существованию организмов в различных условиях выработались у них исторически. В результате этого сложного и длительного процесса сформировались специфические для каждой географической зоны группировки растений и животных.

б) воздушная (стриж);

в) подземная (крот);

г) наземная (заяц).

Рис. 3. Кит Рис. 5. Крот

Рис. 4. Стриж Рис. 6. Заяц

Закономерности воздействия абиотических факторов на организмы

Экологические факторы чрезвычайно разнообразны, и каждый вид, испытывая их влияние, отвечает на него по-разному. Тем не менее, есть общие законы, которым подчиняются ответные реакции организмов на любой фактор среды.

Главный из них — закон оптимума: любой экологический фактор имеет определённые пределы положительного влияния на живые организмы.

При отклонении от этих пределов знак воздействия меняется на противоположный. Например, животные и растения плохо переносят сильную жару и сильные морозы; оптимальными являются средние температуры. Точно так же и засуха, и постоянные проливные дожди одинаково неблагоприятны для урожая. Закон оптимума отражает диапазон влияния каждого фактора на жизнеспособность организмов. На графике он выражается симметричной кривой, показывающей, как изменяется жизнедеятельность вида при постепенном увеличении воздействия фактора.

В центре под кривой — зона оптимума. При оптимальных значениях фактора организмы активно растут, питаются, размножаются. Чем больше отклоняется значение фактора вправо или влево, т.е. в сторону уменьшения или увеличения силы действия, тем менее благоприятно это для организмов. Кривая, отражающая их жизнедеятельность, резко спускается вниз по обе стороны от оптимума. Здесь располагаются две зоны пессимума. При пересечении кривой с горизонтальной осью находятся две критические точки. Это такие значения фактора, которые организмы уже не выдерживают, за их пределами наступает смерть. Расстояние между критическими точками показывает степень выносливости организмов к изменению фактора. Условия, близкие к критическим точкам, особенно тяжелы для выживания. Такие условия называются экстремальными.

Реферат: Экологические факторы. Закон оптимума

По курсу «Экология»
на тему: «Экологические факторы. Закон оптимума»

Студентки 3 курса

Условия и ресурсы среды — взаимосвязанные понятия. Они характеризуют среду обитания организмов. Условия среды обычно определяют как экологические факторы, оказывающие влияние (положительное или отрицательное) на существование и географическое распространение живых существ.
Экологические факторы очень многообразны как по своей природе, так и по воздействию на живые организмы. Условно все факторы среды подразделяются на три основные группы.

Биотические факторы — это всевозможные формы влияния живых организмов друг на друга (например, опыление насекомыми растений, конкуренция, поедание одних насекомых другими, паразитизм) и на среду. Биотические взаимоотношения имеют чрезвычайно сложный и своеобразный характер и также могут быть прямыми и косвенными.
Абиотические факторы — это факторы неживой природы, прежде всего климатические: солнечный свет, температура, влажность, и местные: рельеф, свойства почвы, соленость, течения, ветер, радиация и т.д. Эти факторы могут влиять на организмы прямо, то есть непосредственно, как свет или тепло, либо косвенно, как например, рельеф, который обуславливает действие прямых факторов — освещенности, увлажнения, ветра и пр.
Антропогенные факторы — это все те формы деятельности человека, которые воздействуют на естественную природную среду, изменяя условия обитания живых организмов, или непосредственно влияют на отдельные виды растений и животных.

Классификация ресурсов

— по происхождению :

  • Ресурсы природных компонентов (минеральные, климатические, водные, растительные, земельные, почвенные, животного мира)
  • Ресурсы природно-территориальных комплексов (горно- промышленные, водохозяйственные, селитебные, лесохозяйственные)

— по видам хозяйственного использования

  • Ресурсы промышленного производства
    • Энергетические ресурсы (Горючие полезные ископаемые, гидроэнергоресурсы, биотопливо, ядерное сырье)
    • Неэнергетические ресурсы (минеральные, водные, земельные, лесные, рыбные ресурсы)
  • Ресурсы сельскохозяйственного производства (агроклиматические, земельно-почвенные, растительные ресурсы — кормовая база, воды орошения, водопоя и содержания)

— по виду исчерпаемости

  • Исчерпаемые
    • Невозобновимые (минеральные, земельные ресурсы)
    • Возобновимые (ресурсы растительного и животного мира)
    • Неполностью возобновимые — скорость восстановления ниже уровня хозяйственного потребления (пахотно пригодные почвы, спеловозрастные леса, региональные водные ресурсы)
  • Неисчерпаемые ресурсы (водные, климатические)

Биотические факторы

Биотическая среда — часть экосистемы, которая состоит из групп организмов, отличающихся друг от друга по способу питания: продуценты, консументы, дедритофаги и редуценты.
Продуценты (producentis — производящий) с помощью фотосинтеза 2 создают органическое вещество и выделяют в атмосферу кислород. К ним относятся зеленые растения(трава, деревья), синезеленые водоросли и фотосинтезирующие бактерии.
Консументы (consumo — потребляю) питаются продуцентами или другими консументами. К ним относятся звери, птицы, рыбы и насекомые.
Детритофаги ( detritus — истертый, phagos — пожиратель) питаются отмершими растительными остатками и трупами животных организмов. К ним относятся дождевые черви, крабы, муравьи, жуки-навозники, крысы, шакалы, грифы, вороны и др.
Редуценты (reducentis — возвращающий) — разрушители (деструкторы) органического вещества. К ним относятся бактерии и грибы, которые в отличие от детритофагов разрушают мертвое органическое вещество до минеральных соединений. Эти соединения возвращаются в почву и снова используются растениями для питания.
Но главными биотическими факторами являются все же не организмы, а взаимотношения между ними.

К абиотическим факторам относятся космические, планетарные, климатические и почвенные .

Солнечное излучение состоит в основном из электромагнитного (светового) и теплового излучений, благодаря которым возникла и развивается жизнь на Земле.
Вращение Земли вокруг Солнца и своей оси обеспечивает смену времен года, дня и ночи.
Наклон земной оси и форма нашей планеты влияют на распределение тепла по поверхности Земного шара.
Космические планетарные факторы обусловили образования широтных географических поясов (экваториальный, тропический, умеренный и полярный).

К климатическим факторам относятся: температура, свет, влажность воздуха, атмосферное давление, осадки, ветер.
Температура. Различают организмы с непостоянной температурой тела и организмы с постоянной температурой тела. Температура тела у первых зависит от температуры окружающей среды. Ее повышение вызывает у них интенсификацию жизненных процессов и ускорение (в известных пределах) развития. Это рыбы, амфибии и рептилии. В значительно меньшей степени зависят от температурных условий среды животные с постоянной температурой тела — птицы и млекопитающие.
Свет . Свет в форме солнечной радиации обеспечивает все жизненные процессы на Земле. Ультрафиолетовые лучи с длиной волны длиной более 0,3мкм составляют 10% лучистой энергии, достигающей земной поверхности. В небольших дозах они необходимы животным и человеку. Под их воздействием в организме образуется витамин D. Наибольшее влияние на организм оказывает видимый свет с длиной волны 0,4-0,75 мкм, чья энергия составляет около 45% общего количества лучистой энергии, падающей на Землю. Синий(0,4-0,5мкм) и красный(0,6-0,7мкм) свет особенно сильно поглощается хлорофиллом.
Инфракрасное излучение составляет 45% от общего количества лучистой энергии падающей на Землю. Инфракрасные лучи повышают температуру тканей растений и животных, хорошо поглощаются объектами неживой природы, в том числе водой.
Влажность .В природе, как правило, существуют cуточные колебания и влажности воздуха, которые на ряду со светом и температурой регулируют активность организмов. Влажность как экологический фактор важна и тем, что изменяет реакцию организма на температурные колебания. Температура сильнее влияет на организм, если влажность очень высока или низка. Точно так же роль влажности повышается, если температура близка к пределам выносливости данного вида.
Климат во многом определяет формирование экосистем внутри географических поясов (географических зон).
Так, в умеренном поясе образуются зоны хвойных (тайга), смешанных и широколиственных лесов, лесостепи, степи, полупустыни и пустыни.
В горных системах от подножий к вершинам выделяются высотные географические пояса (высотная поясность или зональность), которые также образуются в результате изменения климата с высотой рельефа.

Почвенные факторы: тепловой режим, влажность и плодородие. Где плодороднее почва, там богаче растительность и, соответственно, разнообразнее животный мир. Чем скуднее почва, тем беднее и животный мир.

Антропогенные факторы

Антропогенные факторы складываются из прямого и косвенного воздействия человека на природу: вырубка лесов, распашка полей, истребление или переселение животных и растений, загрязнение воды, почвы и атмосферы. Подробнее об этом в разделе прикладная экология .
Наиболее ощутимое воздействие связано с работой промышленных предприятий и применением тяжелой техники. В этих случаях антропогенные факторы называютсятехногенными .

Закон оптимума

Результаты действия переменного фактора зависят прежде всего от силы его проявления, или дозировки. Факторы положительно влияют на организмы лишь в определенных пределах. Недостаточное либо избыточное их действие сказывается на организмах отрицательно.

Зона оптимума — это тот диапазон действия фактора, который наиболее благоприятен для жизнедеятельности. Отклонения от оптимума определяют зоны пессимума. В них организмы испытывают угнетение.

Минимально и максимально переносимые значения фактора — это критические точки, за которыми организм гибнет.

Закон оптимума универсален. Он определяет границы условий, в которых возможно существование видов, а также меру изменчивости этих условий. Виды чрезвычайно разнообразны по способности переносить изменения факторов. В природе выделяются два крайних варианта — узкая специализация и широкая выносливость. У специализированных видов критические точки значения фактора сильно сближены, такие виды могут жить только в относительно постоянных условиях. Так, многие глубоководные обитатели — рыбы, иглокожие, ракообразные — не переносят колебания температуры даже в пределах 2-3 °С. Растения влажных местообитаний (калужница болотная, недотрога и др.) моментально вянут, если воздух вокруг них не насыщен водяными парами. Виды с узким диапазоном выносливости называют стенобионтами, а с широким — эврибионтами. Если нужно подчеркнуть отношение к какому-либо фактору, используют сочетания «стено-» и «эври-» применительно к его названию, например, стенотермный вид — не переносящий колебания температур, эвригалинный — способный жить при широких колебаниях солености воды и т. п.

Для выражения степени толерантности в экологии применяются термины, использующие приставки стено- (узкий) и эври- (широкий). Маловыносливые организмы, узкоограниченные каким-либо экологическим фактором и способные обитать только в условиях устойчивого постоянства этого фактора называют стенобионтами. К ним обычно принадлежат многие паразиты, виды, обитающие на океанических глубинах, в пещерах, тропических лесах. Напротив, организмы, способные существовать при широких амплитудах изменчивости факторов окружающей среды, называют эврибионта ми. Они способны выносить широкую амплитуду интенсив ности различных экологических факторов. К ним относятся многие наземные животные. Например, ареал обитания лисицы распространяется от лесотундры до степей.

Если хотят подчеркнуть отношение организма к конкретному фактору, то используют термины, первая часть которых образована приставками стено- или эври-, а вторая содержит указание на конкретный фактор, например: эвритермные организмы — имеющие широкий температурный интервал (многие насекомые), сте-нотермные организмы — приспособившиеся к узкой амплитуде температур (для растений тропических лесов колебания температуры в пределах +5. +8°С могут быть губительными).
Таким образом, во отношению к определенным экологическим факторам организмы могут подразделяться:

■ на стенотермные — эвритермные (по отношению к температуре);

■ стеногидрические — эвригидрические (по отношению к воде);

■ стеногалинные — эвригалинные (по отношению к солености);

■ стенофагные — эврифагные (по отношению к пище);

■ стеноойкные — эвриойкные (по отношению к местообитанию);

■ стснобатные — эврибатные (по отношению к давлению воды).

Закон оптимума на примере растений

Основные законы продукционного процесса

Определение
Продукционный процесс растений – это совокупность взаимосвязанных процессов, происходящих в растении, из которых основными являются фотосинтез, дыхание, рост, формирующих урожай растений.
Продукционный процесс зависит от факторов внешней среды и способен сам трансформировать средообразующие факторы через изменение газообмена, транспирацию, архитектуру посевов.

Из этих определений следует, что продукционный процесс – весьма разнообразен, включает, кроме трех основных (фотосинтез, дыхание, рост) еще и многие процессы в растениях, которые зависят от факторов внешней среды. Эти факторы внешней среды растения способны видоизменять сами, трансформировать их в некоторых пределах. Хорошо известно, как растения благодаря строению листьев и их расположению (архитектура посевов, движение листьев за Солнцем) способно достичь максимального потребления света. Другим примером может служить способность растений формировать сомкнутые покровы, в которых устанавливается определенный, отличный от условий над растительным покровом микроклимат: в посеве и около него другая влажность, температура, скорость ветра, и соответственно, иные транспирация, дыхание и многие другие взаимосвязанные процессы.

Несмотря на многообразие факторов, определяющих продукционный процесс, несмотря на многочисленные приспособительные реакции растений, их разнообразие, в агрофизике выделяют несколько общих законов продукционного процесса, которые также пройдут «красной нитью» через весь курс «Агрофизики». Этих законов немного, мы выделим пять основных. Некоторые из них совершенно очевидны и понятны на обыденном уровне. Другие требуют более подробного рассмотрения, которое будет сделано в данном курсе (в основном, в III -й Части). Сейчас же мы их просто перечислим и кратко прокомментируем:

1.Закон незаменимости основных факторов жизни. Этот закон утверждает, что ни один из факторов развития растений не может быть полностью заменен каким-либо другим. Ведь нельзя же заменить для растения тепло – влагой, влагу – светом и проч. Все эти факторы обязательно (свет, тепло, влага) необходимы растениям. В отсутствии хотя бы одного из них оно погибнет. Эти факторы, — свет, тепло, влага, — факторы космические, их ничем нельзя заменить, они – основные, все определяющие факторы (см. «К вопросу о…»). Из этого закона следует очень важный вывод, на который иногда указывают, как на самостоятельный закон, столь важно его значение. Это закон «физиологических часов». Для растений одним из основных регулирующих фактором является фотопериодичность, регулярность светового режима в каждой природной зоне. Именно длина дня и ночи является для большинства растений регулятором для наступления определенных стадий развития. Например, «запуск» подготовки деревьев к зиме, заключающейся в том, что они сбрасывают листья, замедляют многие физиологические процессы, происходит именно при определенной длине дня. Для растений длина дня – неумолимый космический фактор, на который оно всегда, вне зависимости от складывающихся в этот год метеоусловий, может опираться.

2. Закон неравноценности и компенсирующего воздействия факторов среды. Действительно, основные факторы, такие как тепло, свет, воду, заменить ничем нельзя. А вот их действие как-то изменить могут другие факторы. Например, облачность, туман могут ослабить недостаток влаги. А ветер ослабляет неблагоприятное действие заморозков. Главное же отличие этого закона от 1-го (закона незаменимости основных факторов жизни): первый действует всегда, на протяжении всей жизни растении, а второй – в отдельные периоды жизни растении, снижая неблагоприятные или увеличивая благоприятное действие основных факторов жизни.

3. Закон минимума. Этот закон часто трактуется как закон Либиха в отношении питательных элементов для растений, и его нередко представляют в виде бочки с досками разной длины. Самая низкая дощечка определяет урожай. Мы будем трактовать этот закон более обще, агрофизически: интенсивность продукционного процесса определяется действием того физического фактора среды, который наиболее удален по значениям от своего оптимума. При такой трактовке из этого закона есть два следствия или самостоятельных закона:

(1) рост интенсивности процесса будет определяться скоростью прироста фактора, наиболее удаленного от оптимума. Часто этот закон приводят в формулировке известного немецкого агрофизика Э.Вольни: «Фактор, находящийся в минимуме, тем сильнее влияет на урожай, чем больше остальные факторы находятся в оптимуме» и именуется в литературе как закон Э. Вольни-Либшера;

(2) следует учитывать «компенсирующее» действие других, находящихся не в оптимальных условиях, факторов (см. закон 2 о компенсирующем воздействии факторов среды).

4. Закон оптимума. Этот закон гласит, что наивысшая скорость продукционного процесса достигается при достижении всеми факторами своего оптимума. Иначе говоря, максимальный урожай может быть достигнут только при оптимизации всех основных факторов жизни. Этот закон тоже может рассматриваться как следствие 1-го закона о незаменимости факторов внешней среды. Однако именно этот закон является руководящим для достижения максимальной продуктивности за счет оптимизации действия разнообразных факторов. Именно поэтому он так важен и выделен в отдельный закон.

5. Закон «критических периодов». Этот закон указывает на то, что в жизни растения имеются периоды, в течение которых растение наиболее чувствительно к недостатку того или иного фактора. Например, для многих зерновых культур критическим периодом в отношении к почвенной влаге считается период от выхода в трубку до колошения. Если в эту фазы развития растений сложится недостаток влаги в почве, то потери будут наибольшими, иногда – критическими. А фазы от цветения до восковой спелости являются критическими в отношении тепла.

Эти законы агрофизики, законы, связывающие физические факторы среды и продукционный процесс являются весьма общими, действующими в любых природных или искусственно созданных условиях. Хотя в каждом конкретном случае следует учитывать региональные особенности как внешних для растения факторов (почвенные, метеорологические и погодные условия и проч.), так и особенностей самих растений.

Елена Фомина/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные с юридическим оформлением документов. Уверена вы найдете для себя немало полезной информации. С уважением, Елена Фомина.

Понравилась статья? Поделиться с друзьями:
News-nnovgorod.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: